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1 Introduction

A linear program is an optimization problem in which both the objective and the
constraint are described by linear functions. It is finite dimensional if both the number
of programming variables and that of constraints are finite, and is infinite dimensional
if these two numbers are infinite.
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A rather complete theory for finite dimensional linear programs has been devel-
oped. The simplex method for solving such problems, discovered by G.B. Dantzig in
1947, is one of the most famous algorithms of the 20th century. This method has a
wide range of applications in optimization. In the last three decades, interior methods
have been successfully applied to linear programs to reduce computational time for
large-scale problems.

For infinite dimensional programs, a satisfactory theory has not yet been com-
pleted in some sense, though there are many interesting results. This is an important
area of research, as it has significant applications to continuous transportation, piece-
wise continuous assignments, time-continuous network-flows, space-continuous flow
optimization, optimal design of structures, and so on; see e.g. [1, 6, 12, 15]. This
type of problems was first considered by R. Bellman [3] in 1957. His problem was
in the context of continuous functions of time and is related to a model of linear
optimal control used in production systems. In 1956, R.J. Duffin [5] obtained some
foundational results of the theory of infinite dimensional linear programming. Many
other authors have further contributed to this theory, including D. Gale, L. Hurwicz,
K.O. Kortanek, K.S. Kretschmer, J.M. Borwein, A. Shapiro, C. Zalinescu, etc.

Excellent reviews on duality theorems in infinite dimensional linear programming
and some related topics were given by Anderson [1] and by Anderson and Nash [2,
pp. 61–63]. In the terminology of Bonnans and Shapiro [4], the problems considered
in [2] and in [4, pp. 125–132] are conic linear optimization problems. They are more
complicated than the generalized linear programs [4, pp. 132–145], where the ordering
cones are generalized polyhedral convex sets.

Some information about recent achievements in infinite dimensional linear pro-
gramming in general, and in continuous linear programming in particular, can be
found in [18, 19, 20, 21, 22] and the references therein. Note that by introducing a
simple right-hand-side perturbation to the constraint systems (to obtain a sequence
of dual pairs of relaxed problems), Wu has succeeded in proving a strong duality
theorem [22, Theorem 5.1] guaranteeing not only the equality of the optimal values of
the primal problem and the dual problem, but also the existence of solutions for these
continuous-time linear problems. Back to the past a little bit, a theory about linear
semi-infinite programming, where either the number of constraints or the number of
variables is finite, was developed by Goberna and López [8]. We also refer to [9] for
several related results about linear and nonlinear semi-infinite programming.

Tight connections of duality theory with sensitivity analysis have been discussed
by Gretsky et al. [6] and by Shapiro [17]. In particular, in [6], it has been shown that
the value function is subdifferentiable at the primal constraint if and only if there
exists an optimal dual solution and there is no duality gap.

Further studies of duality for infinite dimensional linear programs and an inves-
tigation about the applications of duality theorems in the directions of the last five
chapters of [2] and of the paper by Shapiro [17] would be interesting and of impor-
tance.
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The aim of this paper is twofold. First, to establish basic properties of the duality
gap function, which can serve as a tool for qualitative studies of infinite dimensional
linear programs. Second, to analyze the example of Gale (see [2, pp. 42-43]) showing
that duality gaps do exist for some dual pairs of infinite dimensional linear programs,
in parametric forms. In addition, by using the concepts of Riemann–Stieltjes integral
and function of bounded variation, we are able to give a series of illustrative examples
for our result on the duality gap function of linear programs on standard dual pairs
of Banach spaces.

Some preliminaries are given in the next section. The duality gap function is
studied in Section 3, where basic properties of the function and two theorems on its
behavior are obtained. To illustrate the obtained results, parametric versions of an
example due to D. Gale are analyzed in Section 4, and a series of parametric linear
programs on spaces of continuous functions are constructed in Section 5.

2 Preliminaries

We begin by recalling the concept of dual pair of topological vector spaces and some
related facts (see Anderson and Nash [2], Robertson and Robertson [16], and the
references therein).

Definition 2.1 Let X and Y be vector spaces over R. Let be given a bilinear form
〈·, ·〉 such that for each x ∈ X and for each y ∈ Y the functionals 〈x, ·〉 and 〈·, y〉 are
linear. If

(i) for each x ∈ X \ {0} there exists y ∈ Y with 〈x, y〉 6= 0, and
(ii) for each y ∈ Y \ {0} there exists x ∈ X with 〈x, y〉 6= 0,

then (X, Y ) is called a dual pair.

One can define a topology on X by letting the sets

BA = {x ∈ X | − 1 ≤ 〈x, y〉 ≤ 1, ∀ y ∈ A},

where A runs through all the finite subsets of Y , to form a base of neighborhoods
of the origin. This topology, denoted by σ(X, Y ), is called the weak topology on X.
With respect to σ(X, Y ), X is a locally convex Hausdorff topological vector space.
The weak topology on Y is defined similarly.

One says that a locally convex topology on X is consistent with the dual pair
(X, Y ) if Y is the dual of X w.r.t. this topology. We know that σ(X, Y ) is the
coarsest one among such topologies on X and there is also the finest one among
those called the Mackey topology with notation τ(X, Y ). One constructed τ(X, Y )
as follows. Let A be the set of all the balanced convex σ(Y,X)-compact subsets of
Y . The sets

ε

( ⋂
1≤i≤k

A0
i

)
(ε > 0, k ∈ N),
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where A0
i := {x ∈ X | sup

y∈Ai
|〈x, y〉| ≤ 1} with Ai ∈ A, i = 1, . . . , k, form a base of

neighborhoods of the origin in the Mackey topology on X. In the special case where
X is a normed space, Y is the dual of X, and 〈x, y〉 is the value of y at x, the Mackey
topology on X coincides with its normed topology.

Let (X, Y ) and (Z,W ) be two dual pairs of vector spaces. In this paper, we
always consider the weak topologies σ(X, Y ) and σ(Z,W ) unless others are mentioned
explicitly. Let A : X → Z be a σ(X, Y )–σ(Z,W )-continuous linear map. The adjoint
(or transpose) of A is the linear map A∗ : W → Y defined by the condition

〈x,A∗w〉 = 〈Ax,w〉 ∀x ∈ X, ∀w ∈ W.

It is well known that A∗ is σ(W,Z)–σ(Y,X)-continuous.

Let P be a convex cone in X. We need 0 ∈ P , but we do not require the closedness
of P . One says that P is a positive cone in the sense that it defines the following
partial order in X: Write x ≥ u if x− u ∈ P . Let b ∈ Z and c ∈ Y be given.

Definition 2.2 The equality constrained linear program corresponding to the data
set {A, P, b, c} is

(EP) min{〈x, c〉 | Ax = b, x ≥ 0}.

A program is called consistent if it has at least one feasible solution. The optimal
value (or simply the value) of a consistent program (EP), denoted by val(EP), is
defined as the infimum of the objective function 〈·, c〉 over the set of feasible solutions.
If (EP) is inconsistent then, in accordance with the convention inf ∅ = +∞, we let
val(EP) = +∞. The optimal solution set (or solution set, for short) of (EP) is denoted
by Sol(EP).

Remark 2.1 As in the classical transportation problem (see, e.g., [12, p. 556]), vector
c in (EP) can be interpreted as the cost, while vector b represents the supplies and
demands in a network optimization problem which is modeled by (EP). Operator A,
which represents the incidence matrix in the classical transportation problem, can
be interpreted as the data describing the structure of the network. The constraint
x ≥ 0 (i.e., x ∈ P ) can be interpreted as the traditional requirements on the signs of
the related programming variables. Hence, in our perturbation analysis of (EP), it is
reasonable to assume that A and P are fixed, while c and b are subject to change.

The dual cone of P is defined by setting P ∗ := {y ∈ Y | 〈x, y〉 ≥ 0, ∀x ∈ P}.

Definition 2.3 The dual problem of (EP), denoted by (EP∗), is

(EP∗) max{〈b, w〉 | −A∗w + c ∈ P ∗, w ∈ W}.

If (EP∗) is consistent, its optimal value is defined as the supremum of the objective
function 〈b, w〉 over the set of feasible solutions w. One often interprets X as the
primal variable space, Z as the primal constraint space, W as the dual variable
space, and Y as the dual constraint space.

The next duality theorem can be found in [2, Chap. 3].
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Theorem 2.1 (Weak duality) If (EP) and (EP∗) are both consistent, then val(EP) ≥
val(EP∗), and both optimal values are finite.

Note that even if both the primal and dual programs are consistent, one cannot
assert that their values are equal (see Section 4 below). This is the main difference
between duality theorems in the infinite dimensional setting and duality theorems in
the traditional finite dimensional setting.

One says that a program has no duality gap if the optimal value of the primal
program and that of its dual are equal. There are many conditions guaranteeing the
absence of duality gap. We will need two theorems involving the existence of interior
points of certain sets.

Theorem 2.2 (Strong duality; see [2, Theorem 3.11]) Suppose that there is some
neighborhood B of the origin in Z with respect to the Mackey topology τ(Z,W ) sat-
isfying b + B ⊂ AP . If (EP) has a finite value and there exists γ ∈ R such that for
each z ∈ b + B one can find x ∈ P with Ax = z and 〈x, c〉 ≤ γ, then (EP) has no
duality gap.

Since the Mackey topology contains any topology which is consistent with a dual
pair, the interior point conditions involving this topology are the weakest ones that
can be given in term of consistent topologies. To apply the above theorem, we only
need to find an appropriate topology on Z consistent with the dual pair (Z,W ), for
example the weak topology σ(Z,W ), such that there is a neighborhood B of the
origin with the required properties.

Theorem 2.3 (Strong duality; see [2, Theorem 3.12]) Let A : X → Z be a surjective
continuous linear map between two Banach spaces X and Z, whose dual spaces are
respectively Y and W . If val(EP) is finite and there exists x0 ∈ int(P ) with Ax0 = b,
where int(P ) denotes the interior of P , then (EP) has no duality gap.

3 Duality gap function and its basic properties

In this section, we consider the linear program (EP) and its dual (EP∗) which are
defined in Section 2. However, we will fix A and P , and interpret both b and c as
parameters. The reason for doing so has been explained in Remark 2.1.

The function ϕ : Y × Z → R = [−∞,+∞], with ϕ(c, b) being the infimum of
〈x, c〉 over the feasible set

F (b) := {x ∈ X | Ax = b, x ≥ 0}

of (EP), is the optimal value function of (EP). The function ψ : Y × Z → R with
ψ(c, b) being the supremum of 〈b, w〉 over the feasible set

F ∗(c) := {w ∈ W | −A∗w + c ∈ P ∗}

of (EP∗), is the optimal value function of (EP∗).



6

We now define the concept of duality gap function, which is a function of two
variables b and c. Denote by Λ the set of all pairs (c, b) for which both problems (EP)
and (EP∗) are consistent, i.e.,

Λ = {(c, b) ∈ Y × Z | F ∗(c) 6= ∅, F (b) 6= ∅}.

Definition 3.1 The duality gap function of (EP) is the function g : Λ→ R with

g(c, b) := ϕ(c, b)− ψ(c, b). (1)

Remark 3.1 By the weak duality relation in Theorem 2.1, one has

−∞ < ψ(c, b) ≤ ϕ(c, b) < +∞, ∀ (c, b) ∈ Λ.

Therefore, g(c, b) is finite and nonnegative for all (c, b) ∈ Λ.

Remark 3.2 If F (b) = ∅ then ϕ(c, b) = +∞. In this case, if F ∗(c) 6= ∅ and if
ψ(c, b) = +∞, then the difference ϕ(c, b) − ψ(c, b) = (+∞) − (+∞) is undefined. If
F ∗(c) = ∅ then ψ(c, b) = −∞; thus ϕ(c, b)−ψ(c, b) = (+∞)−(−∞) = +∞. If F (b) 6=
∅, ϕ(c, b) = −∞, and F ∗(c) = ∅, then the difference ϕ(c, b)−ψ(c, b) = (−∞)− (−∞)
is undefined.

The above remarks assure us that it is reasonable to study g on the set Λ.

Proposition 3.1 The effective domain Λ of the duality gap function g is a convex
cone which can be computed by the formula

Λ = (A∗W + P ∗)× AP. (2)

Proof This fact is easy to prove, so we leave it to the reader. Note that (2) yields
(0, 0) ∈ Λ. (The last inclusion can be checked by noting 0 ∈ F (0) and 0 ∈ F ∗(0).) �

Proposition 3.2 The function g(c, b) is nonnegatively homogeneous with respect to
each of the variables c and b. In particular, one has g(0, b) = 0 and g(c, 0) = 0 for
all (c, b) ∈ Λ.

Proof First, suppose that c = 0 and b ∈ AP . On one hand, we have ϕ(0, b) = 0
as (EP) is feasible and the objective function is identically zero. On the other hand,
by Theorem 2.1, ψ(0, b) ≤ ϕ(0, b). Since 0 is a feasible solution of the problem
(EP∗) corresponding to the pair (0, b), we must have ψ(0, b) = 0. Therefore, for
t = 0, g(tc, b) = 0 = tg(c, b) for all (c, b) ∈ Λ. In the same way, we can show that
g(c, tb) = tg(c, b) = 0 for t = 0 and for all (c, b) ∈ Λ. Now, let (c, b) ∈ Λ be given
arbitrarily. For any t > 0, it is clear that tF ∗(c) = F ∗(tc) and tF (b) = F (tb). Since
F ∗(c) 6= ∅ and F (b) 6= ∅, both sets F ∗(tc) and F (tb) are nonempty. Consequently,

ϕ(tc, b) = inf
x∈F (b)

〈x, tc〉 = t inf
x∈F (b)

〈x, c〉 = tϕ(c, b)



7

and
ψ(tc, b) = sup

v∈F ∗(tc)

〈b, v〉 = t sup
w∈F ∗(c)

〈b, w〉 = tψ(c, b).

It follows that
g(tc, b) = ϕ(tc, b)− ψ(tc, b) = tg(c, b)

for all t > 0. Arguing in the same manner, we obtain

g(c, tb) = ϕ(c, tb)− ψ(c, tb) = tg(c, b)

for all t > 0, which completes the proof. �

A real-valued function defined on a convex subset of a vector space is called a DC
function if it can be represented as the difference of two convex functions.

Proposition 3.3 The duality gap function g is a DC function with respect to each
variable.

Proof By Proposition 3.2, ϕ(c, b) and ψ(c, b) are nonnegatively homogeneous w.r.t.
each of the variables c, b. Suppose that b ∈ AP is fixed. For any c1 and c2 belonging
to A∗W + P ∗, on one hand one has

ϕ(c1 + c2, b) = inf
x∈F (b)

〈c1 + c2, x〉

≥ inf
x∈F (b)

〈c1, x〉+ inf
x∈F (b)

〈c2, x〉 = ϕ(c1, b) + ϕ(c2, b).

So ϕ(·, b) is a concave function. On the other hand, as F ∗(c1) +F ∗(c2) ⊂ F ∗(c1 + c2),
one has

ψ(c1 + c2, b) = sup
w∈F ∗(c1+c2)

〈b, w〉

≥ sup
w∈F ∗(c1)+F ∗(c2)

〈b, w〉 = sup
w1∈F ∗(c1)
w2∈F ∗(c2)

〈b, w1 + w2〉

= sup
w1∈F ∗(c1)

〈b, w1〉+ sup
w2∈F ∗(c2)

〈b, w2〉 = ψ(c1, b) + ψ(c2, b).

Hence ψ(·, b) is a concave function. It follows that

g(·, b) = ϕ(·, b)− ψ(·, b) = (−ψ(·, b))− (−ϕ(·, b))

is a DC function.
Now, fix a vector c ∈ A∗W + P ∗. For any b1, b2 ∈ AP , since F (b1) + F (b2) ⊂

F (b1 + b2), one gets

ϕ(c, b1 + b2) = inf
x∈F (b1+b2)

〈x, c〉

≤ inf
x∈F (b1)+F (b2)

〈x, c〉 = inf
x1∈F (b1)
x2∈F (b2)

〈x1 + x2, c〉

= inf
x1∈F (b1)

〈x1, c〉+ inf
x2∈F (b2)

〈x2, c〉 = ϕ(c, b1) + ϕ(c, b2).
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So ϕ(c, ·) is a convex function. Furthermore, since

ψ(c, b1 + b2) = sup
w∈F ∗(c)

〈b1 + b2, w〉

≤ sup
w∈F ∗(c)

〈b1, w〉+ sup
w∈F ∗(c)

〈b2, w〉 = ψ(c, b1) + ψ(c, b2),

one can assert that ψ(c, ·) is a convex function. Hence g(c, ·) = ϕ(c, ·) − ψ(c, ·) is a
DC function. �

Definition 3.2 (See e.g. [7, p. 7], [10, Def. 1.8]) Let X be a vector space and M be
a nonempty subset of X. The core (or the algebraic interior) of M is defined by

cor(M) := {x ∈M | ∀u ∈ X, ∃ δ > 0 such that x+ tu ∈M, ∀ t ∈ (−δ, δ)}.

Remark 3.3 (See e.g. [7, p. 59], [10, Lemma 1.32]) If X is a finite dimensional
normed vector space and M ⊂ X is a convex set, then cor(M) = int(M). If M is
a convex subset of a topological vector space with int(M) 6= ∅, then we also have
cor(M) = int(M).

Theorem 2.2 allows us to prove our first theorem on the duality gap function.
Here the parameter b is changing while c is fixed.

Theorem 3.1 Suppose that c ∈ A∗W + P ∗ and there exist b ∈ Z, a neighborhood V
of the origin in Z with respect to the Mackey topology τ(Z,W ), and a scalar γ such
that b+ V ⊂ AP , and for each z ∈ b+ V there is x ∈ P with Ax = z and 〈x, c〉 ≤ γ.
Then g(c, .) is identically null on cor(AP ).

Proof Let c, b, V , γ be given as in the statement of the theorem. Then, by (2) we

have {c} × (b+ V ) ⊂ Λ. Hence, for any b̃ ∈ b+ V , both problems

min{〈x, c〉 | Ax = b̃, x ≥ 0}

and
max{〈̃b, w〉 | −A∗w + c ∈ P ∗, w ∈ W}

are consistent. For an arbitrarily given vector b′ ∈ cor(AP ), we can find µ > 0 such
that

b̂ := b′ + µ(b′ − b) = (1 + µ)b′ − µb

belongs to AP . So there exists x̂ ∈ P with Ax̂ = b̂. By virtue of the convexity of AP
and by the fact that b+ V ⊂ AP , one has

1

1 + µ
b̂+

µ

1 + µ
(b+ V ) ⊂ AP.

Setting V ′ =
µ

1 + µ
V , we see that V ′ is a neighborhood of the origin in the topology

τ(Z,W ). Since

b′ + V ′ =

(
1

1 + µ
b̂+

µ

1 + µ
b

)
+

µ

1 + µ
V =

1

1 + µ
b̂+

µ

1 + µ
(b+ V ),
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for each b′′ ∈ b′ + V ′ there exists some b̃ ∈ b+ V such that

b′′ =
1

1 + µ
b̂+

µ

1 + µ
b̃.

As b̃ ∈ b + V , by assumption there exists x̃ ∈ P with Ax̃ = b̃ and 〈x̃, c〉 ≤ γ. Then

A

(
1

1 + µ
x̂+

µ

1 + µ
x̃

)
= b′′ and

〈
1

1 + µ
x̂+

µ

1 + µ
x̃, c

〉
=

1

1 + µ
〈x̂, c〉+

µ

1 + µ
〈x̃, c〉 ≤ γ′,

where γ′ :=
1

1 + µ
〈x̂, c〉+

µ

1 + µ
γ. Thus, the vector

x′′ :=
1

1 + µ
x̂+

µ

1 + µ
x̃

belongs to P , Ax′′ = b′′, and 〈x′′, c〉 ≤ γ′. Applying Theorem 2.2 to the pair (c, b′),
we have g(c, b′) = 0. Since b′ ∈ cor(AP ) was taken arbitrarily, it follows that g(c, .)
is identically null on cor (AP ). �

On the basis of Theorem 2.3, we now establish our second theorem on the duality
gap function, where both c and b are subject to change.

Theorem 3.2 Suppose that X and Z are Banach spaces, Y and W are respectively
their dual spaces. Let A : X → Z be a surjective continuous linear mapping. If there
exist (c, b) ∈ Λ and x0 ∈ int(P ) such that Ax0 = b, then the duality gap function g is
identically null on (A∗W + P ∗)× cor(AP ).

Proof Given any (c′, b′) ∈ (A∗W + P ∗) × cor(AP ), we note that the problem (EP)
with (c, b) replaced by (c′, b′) has a finite optimal value, that is, |ϕ(c′, b′)| < ∞ by

Remark 3.1. Since b′ ∈ cor(AP ), there exists t > 0 such that b̂ := b′ + t(b′− b) ∈ AP.
Hence there is x̂ ∈ P with Ax̂ = b̂. As x0 ∈ int(P ), there exists a neighborhood V of
the origin of X in the normed topology such that x0 + V ⊂ P . Put

x′ =
1

1 + t
x̂+

t

1 + t
x0.

By the convexity of P , x′ ∈ P . We have

Ax′ =
1

1 + t
Ax̂+

t

1 + t
Ax0 =

1

1 + t
b̂+

t

1 + t
b = b′.

Note that V ′ :=
t

1 + t
V is a neighborhood of the origin in X. Hence, the property

x′ + V ′ =
1

1 + t
x̂+

t

1 + t
(x0 + V ) ⊂ 1

1 + t
x̂+

t

1 + t
P ⊂ P
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yields x′ ∈ int(P ). We have seen that (EP) with (c, b) being replaced by (c′, b′) ∈
(A∗W + P ∗) × cor(AP ) has a finite optimal value and there exists x′ ∈ intP with
Ax′ = b′. The desired property g(c′, b′) = 0 now follows by applying Theorem 2.3. �

Theorems 3.1 and 3.2 create different settings for the study of the duality gap
function. The first one allows us to deal with a general situation where X, Y, Z, W
are locally convex topological vector spaces. Meanwhile, the second one forces us to
restrict our investigations to the Banach space setting, where X and Z are Banach
spaces, Y and W are respectively their duals. The restriction is necessary because
Theorem 2.3 relies on the Banach open mapping theorem which is not valid for general
locally convex Hausdorff topological vector spaces.

The forthcoming two sections will provide us with some illustrative examples for
the above theorems.

4 Illustrative examples for Theorem 3.1

The non-parametric example of Gale is available in [2, pp. 42-43]. For a better
presentation of the example in the parametric case, we recall here some major facts
concerning the original example.

4.1 The example of Gale

Consider the linear program

(PG) min

{
x0

∣∣∣ x0 +
∞∑
i=1

ixi = 1,
∞∑
i=1

xi = 0, xi ≥ 0, i = 0, 1, 2, . . .

}
.

The program (PG) is a model of (EP) with the following data. The primal variable
space X = R(N), called the generalized finite sequence space, is formed by sequences
with finitely many nonzero terms. The dual of X is Y = RN, which is the space of
all real sequences. Note that (X, Y ) is a dual pair with respect to the bilinear form

〈x, y〉 =
∞∑
i=0

xiyi, ∀ x = (x0, x1, x2, . . .) ∈ X, ∀y = (y0, y1, y2, . . .) ∈ Y .

In what follows, X and Y are considered with the weak topologies (see Section 2).
Let Z = W = R2. Clearly, with respect to the bilinear form

〈z, w〉 = z1w1 + z2w2, ∀ z = (z1, z2) ∈ Z, ∀w = (w1, w2) ∈ W ,

(Z,W ) is a dual pair. Let P = {x = (x0, x1, x2, . . .) ∈ X | xi ≥ 0, i = 0, 1, 2, . . .},
b = (1, 0) ∈ Z, and c = (1, 0, 0, ...) ∈ Y . Let A : X → Z be the linear map represented
by the infinite matrix

A =

(
1 1 2 3 . . .
0 1 1 1 . . .

)
∈M(2×∞).
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It is known that x̄ := (1, 0, 0, . . .) is the unique feasible solution of (PG), therefore,
it is the only optimal solution of (PG). Thus, Sol(PG) = {x̄} and val(PG) = 1. The
dual problem of (PG) is

(PG∗) max {w1 | w1 ≤ 1, iw1 + w2 ≤ 0, i = 1, 2, 3, . . . , w = (w1, w2) ∈ W}.

One has val(PG∗) = 0 and Sol(PG∗) =
{
w = (w1, w2) ∈ W | w1 = 0, w2 ≤ 0

}
. Since

val(PG)− val(PG∗) = 1, (PG) has a duality gap.

4.2 The example of Gale with both b and c being perturbed

We have seen that for the original example of Gale b = (1, 0), c = (1, 0, 0, ...) and the
duality gap of (PG) is 1. A natural question arises: What happens to the duality gap
under small perturbations of b and c? Let us investigate the problem (PG) where
both vectors b = (b1, b2) ∈ Z and c = (c1, c2, . . .) ∈ Y are subject to change. In the
notation of the preceding subsection, we consider the parametric program:

(PGc,b) min

{
∞∑
i=0

cixi

∣∣∣ x0 +
∞∑
i=1

ixi = b1,
∞∑
i=1

xi = b2, xi ≥ 0, i = 0, 1, 2, . . .

}
.

Its dual, denoted by (PG∗c,b), is

max {b1w1 + b2w2 | w1 ≤ c0, iw1 + w2 ≤ ci, i = 1, 2, 3, ..., w = (w1, w2) ∈ W}.

To find the effective domain Λ of the duality gap function g, we will use formula
(2). It is not hard to see that

AP = {b = (b1, b2) ∈ Z | b1 ≥ b2 ≥ 0}. (3)

The cone A∗W + P ∗ and its properties can be described as follows.

Claim 1. Any vector c ∈ A∗W + P ∗ is of the form

c = (α1 + β0, α1 + α2 + β1, . . . , iα1 + α2 + βi, . . . ), (4)

where αj ∈ R for j = 1, 2, and βi ≥ 0 for i ∈ N. It holds that cor(A∗W + P ∗) = ∅.

The proof of the fact that any c ∈ A∗W + P ∗ can be represented as in (4) is left
to the reader. Note that the representation (4) for c is not unique. To prove the
second part of the claim, suppose on the contrary that cor(A∗W + P ∗) 6= ∅. Then
there exists

c = (α1 + β0, α1 + α2 + β1, . . . , iα1 + α2 + βi, . . . ) ∈ A∗W + P ∗,

where αj ∈ R for j = 1, 2, and βi ≥ 0 for i ∈ N, such that for any y = (y0, y1, . . . ) ∈
Y \{0} there exists δ = δ(y) > 0 with c+ty ∈ A∗W+P ∗ for every t ∈ (−δ, δ). Choose

yi > 0 for i ∈ N such that lim
i→∞

i

yi
= 0 and lim

i→∞

βi
yi

= 0. Clearly, y := (y0, y1, . . . )
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belongs to Y \ {0}. Fix one value t ∈ (−δ(y), 0). Since c + ty ∈ A∗W + P ∗, there
exist α′j ∈ R, j = 1, 2, and β′i ≥ 0, i ∈ N, such that

iα1 + α2 + βi + tyi = iα′1 + α′2 + β′i (5)

for i = 1, 2, . . . . Dividing (5) by yi and taking lim inf of both sides of the resulted
equality as i → ∞, we obtain an equality where the left-hand-side is t < 0 and the
right-hand-side is greater or equal to 0. We have thus arrived at a contradiction,
which shows that cor(A∗W + P ∗) = ∅.
Claim 2. Suppose that b = (b1, 0) with b1 > 0 and c ∈ A∗W + P ∗ is of the form (4)
such that

lim inf
i→∞

(
i−1βi

)
= 0. (6)

Then, g(c, b) > 0 if β0 > 0 and g(c, b) = 0 if β0 = 0.

Indeed, if b = (1, 0) then the feasible set of (PGc,b) has just one element x =
(1, 0, 0, . . . ). Hence, for every vector

c = (α1 + β0, α1 + α2 + β1, . . . , iα1 + α2 + βi, . . . ) ∈ A∗W + P ∗,

we have val(PGc,b) = α1 + β0. If w = (w1, w2) is a feasible solution of (PG∗c,b), then

−w1 + α1 + β0 ≥ 0, −iw1 − w2 + iα1 + α2 + βi ≥ 0 (∀i ≥ 1). (7)

The dual problem (PG∗c,b) is the following:

max{w1 | w = (w1, w2) satisfies (7)}.

By (7),
w1 ≤ α1 + β0 (8)

and
i(w1 − α1) ≤ −w2 + α2 + βi (i ≥ 1). (9)

Due to (6), dividing (9) by i and taking lim inf of both sides as i → ∞, we
obtain w1 ≤ α1. Choosing w1 = α1 and w2 = α2, we see that w = (α1, α2) is a
feasible solution of (PG∗c,b). Thus val(PG∗c,b) ≥ α1. Combining this with the inequality
w1 ≤ α1, we get val(PG∗c,b) = α1. Therefore, for c as in (4) and b = (0, 1) we have

g(c, b) = val(PGc,b)− val(PG∗c,b) = β0.

To obtain the desired result for any b = (b1, 0) with b1 > 0, we use the fact that g(c, b)
is homogeneous with respect to b (see Proposition 3.2).

Claim 3. For every b = (β, β) with β > 0, one has g(c, b) = 0 for all c ∈ A∗W +P ∗.

To prove this claim, take any b = (β, β) with β > 0, and any c satisfying (4). For
that b, it is easy to show that x = (0, β, 0, . . . ) ∈ X is the unique feasible solution of
(PGc,b). Hence

val(PGc,b) = β(α1 + α2 + β1). (10)
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By the weak duality relation, we have

val(PG∗c,b) ≤ β(α1 + α2 + β1). (11)

Since the objective function of (PG∗c,b) is β(w1 + w2), from (11) it is clear that the
proof will be completed if we find a feasible solution w = (w1, w2) of the dual problem
such that w1+w2 = α1+α2+β1. Assuming the latter, we can rewrite (7) equivalently
as

w1 ≤ α1 + β0, w1 ≤ α1 +
1

i− 1
(βi − β1) (i ≥ 2). (12)

Setting

w1 = min

{
inf

{
α1 +

1

i− 1
(βi − β1) | i ≥ 2

}
, α1 + β0

}
(note that w1 is finite because βi ≥ 0 for all i ∈ N) and w2 = (α1 + α2 + β1) − w1,
we see at once that w := (w1, w2) satisfies (12). Since w1 +w2 = α1 + α2 + β1 by our
choice of w2, this w is a desired feasible solution for (PG∗c,b).

Claim 4. For every c ∈ A∗W + P ∗ and b = (b1, b2) with b1 > b2 > 0, one has
g(c, b) = 0.

To justify this claim, we will rely on Theorem 3.1. For each b = (b1, b2) with

b1 > b2 > 0, one can find a unique positive integer n such that
1

n+ 1
≤ b2
b1
<

1

n
. Since

1

n+ 2
<
b2
b1
<

1

n
,

there exists ε > 0 such that the open ball B(b, ε) with center b and radius ε has the
following property

B(b, ε) ⊂
{
b′ = (b′1, b

′
2) | b′1 > 0, b′2 > 0,

1

n+ 2
<
b′2
b′1
<

1

n

}
.

For each vector b′ = (b′1, b
′
2) from the ball B(b, ε) we define a vector

x = (x0, x1, . . . , xn, xn+1, xn+2, . . .) ∈ X

as follows: let xi = 0 for every i /∈ {1, n + 2}, and (x1, xn+2) be the unique solution
of the linear system

{
x1 + (n+ 2)xn+2 = b′1
x1 + xn+2 = b′2

⇔


xn+2 =

b′1 − b′2
n+ 1

,

x1 =
(n+ 2)b′2 − b′1

n+ 1
.

Since xn+2 > 0 and x1 > 0, x = (x0, x1, x2, . . . , xn+1, xn+2, . . .) defined as above is a
feasible solution of (PGc,b). For any c of the form (4), one has

〈x, c〉 = (α1 + α2 + β1)
(n+ 2)b′2 − b′1

n+ 1
+ [(n+ 2)α1 + α2 + βn+2]

b′1 − b′2
n+ 1

.



14

As the expression on the right-hand-side of this equality is bounded above by a real
constant γ when b′ = (b′1, b

′
2) moves within the open ball B(b, ε), by Theorem 3.1 we

can assert that g(c, b′) = 0 for each b′ ∈ cor(AP ). In particular, we have g(c, b) = 0.

Claim 5. For b = (0, 0), one has g(c, b) = 0 for all c ∈ A∗W + P ∗.

This claim can be proved easily.

Summing up the above five claims, we get formulas for computing the duality gap
function g(c, b) for all (c, b) ∈ Λ, provided that (6) is satisfied when b = (b1, 0), b1 > 0.

In connection with Claim 2, we observe that the question whether the result is
valid without the extra assumption (6) remains open.

Remark that the example of Gale with parameters can be also analyzed by the
model of countable semi-infinite program in [2, Section 4.2] and Theorem 4.2 from [2,
p. 67].

We intend to consider applications of Theorem 3.1 to the duality gap functions
related to the well-known example of Kretschmer (see [13, p. 230], [2, pp. 43-45]) and
another interesting problem from [2, p. 52], which is denoted by (P0), in a subsequent
paper.

5 Illustrative examples for Theorem 3.2

This section provides some examples of (EP) with intP 6= ∅ where Theorem 3.2 can
be applied to study the duality gap and the duality gap function.

Let α and β be two real numbers, α < β; X = C[α, β], the space of all real-valued
continuous functions on [α, β]. By the Riesz representation theorem, the dual space
of X is Y = NBV [α, β], the space of all functions of bounded variation on [α, β]
which vanish at α and which are continuous from the left at every point in (α, β); see
e.g. [11] or [14]. It is known that X is a Banach space equipped with the supremum
(or Chebyshev) norm

||x|| = max
α≤t≤β

|x(t)|

and Y is a Banach space with the norm

||y|| = T.V.(y)

where T.V.(y) denotes the total variation of y.

Consider the problem

(P1) min

{
β∫
α

x(t) dc(t)
∣∣∣ β∫
α

x(t) dai(t) = bi, i = 1,m; x(t) ≥ 0 ∀t ∈ [α, β]

}
.

Here we work with Riemann–Stieltjes integrals. Both the primal constraint space Z
and its dual space W can be identified with Rm. The functions c, ai for all i = 1,m
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are fixed elements of Y . Vector b = (b1, b2, . . . , bm) is taken from Z. The positive
cone P ⊂ X is

P = {x ∈ X |x(t) ≥ 0 ∀t ∈ [0, 1]}.

It is not hard to see that P has nonempty interior, moreover,

intP = {x ∈ X | x(t) > 0 ∀t ∈ [α, β]} . (13)

Let A : X → Z be defined by

Ax =

 β∫
α

x(t)da1(t),

β∫
α

x(t)da2(t), . . . ,

β∫
α

x(t)dam(t)

 ∀x ∈ X.

Notice that A is a continuous linear operator from X to Z. In addition, one can easily
prove that A is surjective if and only if the set {a1, a2, . . . , am} is linearly independent
in NBV [α, β].

Claim 1. We have

A∗W + P ∗ =

{
m∑
i=1

wiai + y
∣∣∣ w = (w1, w2, . . . , wm) ∈ W, y ∈M

}
, (14)

where M is the set of all nondecreasing functions in Y .

Indeed, the fulfillment of the equality 〈x,A∗w〉 = 〈Ax,w〉 for all x ∈ X and w ∈ W
implies that

A∗w =
m∑
i=1

wiai, ∀w = (w1, w2, . . . , wm) ∈ W.

So, to obtain (14), it suffices to show that P ∗ = M . Since

P ∗ =

y ∈ Y |
β∫
α

x(t)dy(t) ≥ 0 ∀x ∈ P

 ,

from the definition of Riemann–Stieltjes integral it follows that M ⊆ P ∗. It remains
to prove that the strict inclusion cannot occur. If there exists a y ∈ P ∗ \M , then
we would find distinct points t1, t2 ∈ [α, β], t1 < t2, such that µ := y(t1) − y(t2)

is positive. We will construct a function x ∈ P satisfying
β∫
α

x(t)dy(t) < 0. Let

δ ∈ (0, t2 − t1) be given arbitrarily. Put

x(t) =


0 for t ∈ [α, t1 − δ] ∪ (t2, β]

δ−1t+ 1− δ−1t1 for t ∈ (t1 − δ, t1]
1 for t ∈ (t1, t2 − δ]
−δ−1t+ δ−1t2 for t ∈ (t2 − δ, t2].
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It is clear that x ∈ P . Setting Aδ =
t1∫

t1−δ
x(t)dy(t), Bδ =

t2−δ∫
t1

dy(t), and Cδ =

t2∫
t2−δ

x(t)dy(t), we have

β∫
α

x(t)dy(t) = Aδ +Bδ + Cδ. (15)

Note that

Bδ =

t2−δ∫
t1

dy(t) = y(t2 − δ)− y(t1)
δ↘0−−→ −µ = y(t2)− y(t1) < 0.

In addition, one has

|Aδ| ≤ max
t1−δ≤t≤t1

|x(t)|T.V.
(
y|[t1−δ,t1]

)
= T.V.

(
y|[t1−δ,t1]

)
δ↘0−−→ 0,

where y|[t1−δ,t1] stands for the restriction of y on [t1 − δ, t1]. Similarly,

|Cδ| ≤ max
t2−δ≤t≤t2

|x(t)|T.V.
(
y|[t2−δ,t2]

)
= T.V.

(
y|[t2−δ,t2]

)
δ↘0−−→ 0.

Therefore, we can find δ ∈ (0, t2− t1) such that Bδ ≤ −µ
2
, |Aδ| ≤ µ

6
, |Cδ| ≤ µ

6
. With

that δ, by (15) we obtain
β∫
α

x(t)dy(t) ≤ −µ
6
< 0,

which shows that y /∈ P ∗, a contradiction.

Claim 2. The duality gap g is identically zero on (A∗W + P ∗) × int(AP ), provided
that {a1, a2, . . . , am} is linearly independent. In particular, g(c′, b′) = 0 for every pair

(c′, b′) with c′ ∈
{

m∑
i=1

wiai + y
∣∣∣ w = (w1, w2, . . . , wm) ∈ W, y ∈M

}
, where M is the

set of all nondecreasing functions in Y , and b′ ∈ A(intP ).

Indeed, since {a1, a2, . . . , am} is linearly independent, A is surjective. For any
positive continuous function x0 defined on [α, β], one has x0 ∈ int(P ) (since (13)).
Therefore, with b := Ax0 and c ∈ A∗W+P ∗, we see that (c, b) ∈ Λ = (A∗W+P ∗)×AP
and all the assumptions of Theorem 3.2 are satisfied. Since AP is a convex set in
Rm, cor(AP ) = int(AP ). Hence, the first assertion of our claim is valid. To prove
the second assertion, we observe that A(intP ) is an open set by the Banach open
mapping theorem. So A(intP ) ⊂ int(AP ). Now it is clear that the second assertion
follows from the first one and the surjectivity of A.



17

References

1. Anderson, E.J.: A review of duality theory for linear programming over topolog-
ical vector spaces. J. Math. Anal. Appl. 97, 380–392 (1983)

2. Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces.
Wiley, New York (1987)

3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, New
Jersey (1957)

4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems.
Springer, New York (2000)

5. Duffin, R.J.: Infinite programs, in Linear Inequalities and Related Systems (H.W.
Kuhn and A.W. Tucker, Eds.). Princeton Univ. Press, Princeton, New Jersey
(1956)

6. Gretsky, N.E., Ostroy, J.M., Zame, W.R.: Subdifferentiability and the Duality
Gap. Positivity 6, 261–274 (2002)

7. Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer,
New York (1975)
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